\square

Applications of Mathematics

Paper 1 (Non-calculator)

Fill in these boxes and read what is printed below.

Full name of centre

\square

Forename(s)
Surname
Number of seat

Date of birth
Day

| | Month | Year | Scottish candidate number |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Total marks - 45
Attempt ALL questions.

You must NOT use a calculator.

To earn full marks you must show your working in your answers.
State the units for your answer where appropriate.
Write your answers clearly in the spaces provided in this booklet. Additional space for answers is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting.
Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

FORMULAE LIST

Circumference of a circle	$C=\pi d$
Area of a circle	$A=\pi r^{2}$

Theorem of Pythagoras

$$
a^{2}+b^{2}=c^{2}
$$

Volume of a cylinder

$$
V=\pi r^{2} h
$$

Volume of a prism

$$
V=A h
$$

Volume of a cone

$$
V=\frac{1}{3} \pi r^{2} h
$$

Volume of a sphere

$$
V=\frac{4}{3} \pi r^{3}
$$

Standard deviation $\quad s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$
or $s=\sqrt{\frac{\Sigma x^{2}-\frac{(\Sigma x)^{2}}{n}}{n-1}}$, where n is the sample size.

Gradient

$$
\text { gradient }=\frac{\text { vertical height }}{\text { horizontal distance }}
$$

1. Ben worked on a Saudi Arabian oil rig for 4 months.

He was paid in Saudi Arabian Riyal.

Month	Earnings (Riyal)
January	32616
February	30120
March	38624
April	35440

The exchange rate was 5 Riyal to the pound.
Calculate his mean monthly earnings over the 4 months.
Give your answer in pounds.
2. African elephants continue to grow for the duration of their lives.

The table below shows the age of a sample of African elephants and their shoulder heights.

Age of elephant (years)	12	17	28	35	43
Shoulder height (cm)	230	250	270	275	300

(a) On the grid below draw a scattergraph to show this data.
(An additional grid, if required, can be found on page 18)

(b) Draw a line of best fit on your scattergraph.
(c) Use your line of best fit to estimate the age of an African elephant that is 260 cm tall.
3. A polling company predicted the result of an election.

They claimed that the prediction would be within $\pm 3 \%$ of the result.

Prediction	Result
3400 votes	3300 votes

Determine if the company's claim was correct.

* X 844750105 *

4. Laura has to inflate her lorry tyres to a pressure of 84 PSI .

Mark this pressure on the gauge shown.

5. Lucy works as a lifeguard.

Lucy's overtime rate is time and a half.
During one week Lucy worked 40 hours at normal rate and 10 hours at overtime rate.
Lucy was paid $£ 550$ for that week.
(a) Calculate Lucy's normal hourly rate of pay.

Allan is also a lifeguard.
His normal hours are 40 hours per week.
Over the course of 5 weeks Allan worked an additional 16 hours overtime.
(b) Express Allan's overtime hours as a percentage of his normal hours.
6. Mr Kenneth asked his class how much money they had spent on their lunch. The results are shown in the boxplot.

(a) Calculate the inter-quartile range.

The money spent on lunch by Mrs Campbell's class had an inter-quartile range of $£ 1 \cdot 82$.
(b) Make one valid comment comparing the money spent on lunch by Mr Kenneth's class and Mrs Campbell's class.
7. Convert $\frac{3}{7}$ to a decimal fraction.

Round your answer to 3 decimal places.
8. The bar chart below shows the medals won by four countries in the 2016

(a) Calculate the number of gold medals won by the UK in the 2016 Olympic Games.
(b) Calculate the ratio of gold : silver : bronze medals for France.

Give your answer in its simplest form.
9. Gillian flew from Aberdeen to Caracas via Paris.

She got on the aircraft in Aberdeen at 06:05 local time.
She was off the aircraft in Paris for 1 hour 15 minutes.
She got off the aircraft at Caracas at 15:30 local time.

Paris is 1 hour ahead of Aberdeen.
Caracas is 5 hours behind Paris.

Calculate the total time she was on the aircraft.

10. Sarah wants to make chilli con carne.

The table shows the list of tasks and the time taken for Sarah to complete them.

Activity	Description	Preceding task	Time (minutes)
A	assemble ingredients	none	3
B	chop onions	A	5
C	heat pan with oil	B	2
D	fry onions in pan	C	6
E	add mince to pan and stir	D	5
F	open cans of kidney beans and tomatoes	C	2
G	drain kidney beans	F	1
H	measure water into jug	G	1
I	add spice mix to water	H	2
J	add spice mix and water to pan	E,I	2
K	add kidney beans and tomatoes and simmer	J	35
L	microwave rice	J	3
M	serve	K,L	2

(a) Complete the diagram below to show the tasks and times in the boxes.
(An additional diagram, if required, can be found on page 18)

10. (continued)
(b) Sarah claims she can make this chilli con carne in 55 minutes.

Based on the times given, determine if she is correct.
11. George is planning to have his fence repainted.

Last year 3 painters painted the fence in 8 hours.
There will be 5 painters painting the fence this year.
All these painters work at the same rate.
They start painting at 09:30.
They will have a 40 minute break.

Calculate the time they will finish painting the fence.
12. The votes in a school for a class representative were split as follows

- $\frac{2}{5}$ for Sam
- $\frac{4}{9}$ for Ashley
- the remaining votes were for Lesley.

Calculate the fraction of votes that were for Lesley.
13. John has a slope in his back garden.

The slope is the height of 8 planks.
Each plank is 22.5 cm in height.
The planks are 960 cm away from the bottom of the slope.

(a) Calculate the gradient of the slope.

His neighbour Helen also has a slope.
The gradient of her slope is 20%.
Helen thinks her slope is steeper than John's slope.
(b) Determine if she is correct.
14. A 240 g steak costs $£ 3 \cdot 84$.

Complete the shelf label to show the price per kilogram.

15. Stuart's monthly budget is

- $£ 660$ for rent and bills
- $\quad £ 450$ for food and socialising
- $£ 90$ for savings.

Construct a pie chart to show this information.
(An additional diagram, if required, can be found on page 19)
Stuart's monthly budget

Additional grid for question 2 (a)

Additional diagram for question 10 (a)

ADDITIONAL SPACE FOR ANSWERS

Additional diagram for question 15

Stuart's monthly budget

\square

Applications of Mathematics

Paper 2

Duration - 2 hours

Fill in these boxes and read what is printed below.

Full name of centre

\square

Forename(s)
Surname
Number of seat

Date of birth
Day

| | Month | Year | Scottish candidate number |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | D |
| :--- |

Total marks - 65
Attempt ALL questions.

You may use a calculator.

To earn full marks you must show your working in your answers.
State the units for your answer where appropriate.
Write your answers clearly in the spaces provided in this booklet. Additional space for answers is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting.
Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

FORMULAE LIST

Circumference of a circle	$C=\pi d$
Area of a circle	$A=\pi r^{2}$

Theorem of Pythagoras

$$
a^{2}+b^{2}=c^{2}
$$

Volume of a cylinder

$$
V=\pi r^{2} h
$$

Volume of a prism

$$
V=A h
$$

Volume of a cone

$$
V=\frac{1}{3} \pi r^{2} h
$$

Volume of a sphere

$$
V=\frac{4}{3} \pi r^{3}
$$

Standard deviation $\quad s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$
or $s=\sqrt{\frac{\Sigma x^{2}-\frac{(\Sigma x)^{2}}{n}}{n-1}}$, where n is the sample size.

Gradient

$$
\text { gradient }=\frac{\text { vertical height }}{\text { horizontal distance }}
$$

1. Omar has $£ 3000$ which he will invest for 3 years.

He is considering two options.

Determine which option will have the greater value after 3 years.
Use your working to justify your answer.
2. A property developer has the garden plans for a new housing project.

Key ---- wall fencing
\square building

The fencing is at a right angle to the house.
The wall is at a right angle to the house and the shed.
Fencing panels are sold in 2 m sections costing $£ 21 \cdot 40$ each.
(a) Calculate the minimum cost of buying fencing.
(b) Calculate the area of the grass.
3. Ben went to Canada and then to the United States of America.

The exchange rates were

Currency exchange	
Pounds sterling	Other currencies
1	1.75 Canadian dollars
1	1.31 US dollars

- Ben changed $£ 900$ into Canadian dollars.
- He spent 945 Canadian dollars during his stay in Canada.
- He changed his remaining Canadian dollars into US dollars.

Calculate how many US dollars he received.
4. Colin is spreading a layer of bark in part of his garden.

The area of the garden that Colin is covering in bark is shaded in the diagram.

The layer of bark needs to be 50 millimetres deep.
(a) Calculate the volume of bark needed.

Give your answer in litres.
4. (continued)

Ameena is also spreading a layer of bark in her garden.
She needs to buy 6300 litres of bark.
She has a choice of three brands.
All the bark she buys will be the same brand.

Brand A	Brand B	Brand C
100 litres bag @ $£ 6.99$		
Special Offer Two bags for $£ 11.99$	90 litres bag @ $£ 5.99$	70 litres bag @ $£ 4.79$ Special Offer Buy two bags get the third bag free

(b) Determine which brand offers the cheapest price for Ameena to buy her bark.
5. Paula's annual salary is $£ 54890$.

National insurance is calculated on a person's salary before deductions such as pension contributions.

Annual national insurance rates	
Up to $£ 8632$	0%
From $£ 8632$ to $£ 50000$	12%
Over $£ 50000$	2%

(a) Calculate Paula's annual national insurance payment.

Paula pays 8.7% of her annual salary into her pension.
Her annual income tax is $£ 8204 \cdot 37$.
She is paid in 52 weekly payments.
(b) Calculate Paula's weekly net pay.
6. Finlay travelled from his home to work, $23 \cdot 1$ miles away.

His average speed was 42 mph .
He left his home at 08:12.
(a) Calculate what time he arrived at work.

At the weekend, Finlay plans to make a return journey from his home to the shopping centre.

He knows

- the shopping centre is 26 miles away
- his car will cover an average of 67 km per gallon of fuel
- the car has 5 litres of fuel in its tank.
(b) Determine if Finlay will have enough fuel to complete this return journey.
1 mile $=1.609 \mathrm{~km}$
1 gallon $=4.545$ litres

7. Dougie is organising a birthday party for his son.

There will be 13 children at the party.
He will give them juice in cups that are cylindrical with dimensions as shown.

- Each cup will be filled with juice to 2 cm from the top.
- He will give each child 2 cups of juice.
- He will buy the juice in bottles which each contain $1 \cdot 75$ litres.
(a) Calculate the number of bottles of juice he will need to buy.

7. (continued)

He plans to buy circular pizzas from his local takeaway.
He considers two options.

- A pizza with a diameter of 10 inches costs $£ 4$.
- A pizza with a diameter of 12 inches costs $£ 5 \cdot 30$.

Both pizzas have the same uniform depth.
(b) (i) Calculate the area of both pizzas.
(ii) Hence calculate which size of pizza is better value per square inch.

7. (continued)

Dougie wants to hire the local soft play centre with a DJ for the party.
The table below shows the price per child per hour.

Number of children	Soft play only	Soft play and party bag	Soft play and food	Soft play and DJ	Soft play, food and DJ
$1-5$	$£ 3$	$£ 4$	$£ 5$	$£ 6$	$£ 6 \cdot 50$
$6-10$	$£ 2 \cdot 70$	$£ 3 \cdot 50$	$£ 4 \cdot 50$	$£ 5 \cdot 50$	$£ 6$
$11-15$	$£ 2 \cdot 55$	$£ 3 \cdot 20$	$£ 4 \cdot 20$	$£ 5 \cdot 20$	$£ 5 \cdot 70$
$16-20$	$£ 2 \cdot 40$	$£ 3$	$£ 4$	$£ 5$	$£ 5 \cdot 50$
Over 20	$£ 2 \cdot 20$	$£ 2 \cdot 75$	$£ 3 \cdot 80$	$£ 4 \cdot 80$	$£ 5 \cdot 30$

The party will start at 4 pm and end at 6 pm .
(c) Calculate the total cost for the 13 children for soft play and DJ.
8. A local primary school is having a summer event.

They plan to make shortbread to sell at the event.

- They make 10 trays of shortbread.
- Each tray contains 24 slices of shortbread.
- The total cost to make 10 trays of shortbread is $£ 38 \cdot 20$.

The school want to make a profit of at least $£ 20$ from the sale of this shortbread.
(a) Calculate the minimum price that the school should charge for one slice of shortbread.

8. (continued)

The local orienteering club set up a course at the event.

- Participants leave the start point and run on a bearing of 055° for 140 m to flag A.
- They then run on a bearing of 170° for 252 m to flag B.
(b) (i) Construct a scale drawing to illustrate the route.

Use a scale of $1 \mathrm{~cm}: 40 \mathrm{~m}$
(An additional diagram, if required, can be found on page 18)

(ii) The pupils then return to the start point.

Use the scale drawing to determine the bearing and distance of the start point from flag B.
8. (continued)

Two of the games at the event are a lucky dip and a dice game.
The lucky dip has tickets numbered 1 to 150.
To win a prize the ticket needs to end in a zero or a five.
The dice game involves rolling two dice at the same time.
To win a prize a total of 9 or more is needed.
(c) Determine which game has the higher probability of a prize being won.
9. A company uses a packing machine to put sweets into packets.

The number of sweets in a sample of packets is counted.
The number of sweets in each packet is shown below.
$\begin{array}{llllll}39 & 39 & 42 & 41 & 43 & 36\end{array}$
(a) Calculate
(i) the mean 1
(ii) the standard deviation.

The company purchase a new packing machine.
The number of sweets in a sample of packets from the new machine is counted.
For the new machine the mean number of sweets is 40 and the standard deviation is $1 \cdot 7$.
(b) Make two valid comparisons about the number of sweets in each packet between the original and new machines.
9. (continued)

The packets are in the shape of a cuboid with external dimensions as shown.

For delivery, the packets of sweets are packed into a box with internal dimensions as shown.

All the packets must be aligned in the same direction.
(c) Calculate the maximum number of packets that can fit in the box.
9. (continued)

In each packet there are seven colours.
The table shows the number of each colour present in each packet.

Colour	yellow	purple	pink	red	blue	green	orange
Number	7	8	6	4	4	3	7

The packets must be filled as shown in the table.
There are 27500 of each colour in stock.
(d) Calculate how many packets can be filled.

Additional diagram for use in question 8 (b)

N

start

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

